Evidence for the circadian gene period as a proximate mechanism of protandry in a pollinating fig wasp.
نویسندگان
چکیده
Protandry in insects is the tendency for adult males to emerge before females and usually results from intra-sexual selection. However, the genetic basis of this common phenomenon is poorly understood. Pollinating fig wasp (Agaonidae) larvae develop in galled flowers within the enclosed inflorescences ('figs') of fig trees. Upon emergence, males locate and mate with the still galled females. After mating, males release females from their galls to enable dispersal. Females cannot exit galls or disperse from a fig without male assistance. We sampled male and female Ceratosolen solmsi (the pollinator of Ficus hispida) every 3 h over a 24 h emergence period, and then measured the expression of five circadian genes: period (per), clock (clk), cycle (cyc), pigment-dispersing factor (pdf) and clockwork orange (cwo). We found significant male-biased sexual dimorphism in the expression of all five genes. per showed the greatest divergence between the sexes and was the only gene rhythmically expressed. Expression of per correlated closely with emergence rates at specific time intervals in both male and female wasps. We suggest that this rhythmical expression of per may be a proximate mechanism of protandry in this species.
منابع مشابه
Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps.
Nucleotide sequences from the cytochrome oxidase I (COI) gene were used to reconstruct phylogenetic relationships among 15 genera of fig-pollinating wasps. We present evidence supporting broad-level co-cladogenesis with respect to most but not all of the corresponding groups of figs. Using fossil evidence for calibrating a molecular clock for these data, we estimated the origin of the fig-wasp ...
متن کاملHost-specificity and coevolution among pollinating and nonpollinating New World fig wasps.
Figs (Ficus spp., Moraceae) and their pollinating wasps (Hymenoptera, Agaonidae, Chalcidoidea) constitute a classic example of an obligate plant-pollinator mutualism, and have become an ideal system for addressing questions on coevolution, speciation, and the maintenance of mutualisms. In addition to pollinating wasps, figs host several types of nonpollinating, parasitic wasps from a diverse ar...
متن کاملFloral volatiles, pollinator sharing and diversification in the fig-wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa).
Combining biogeographic, ecological, morphological, molecular and chemical data, we document departure from strict specialization in the fig-pollinating wasp mutualism. We show that the pollinating wasps Elisabethiella stuckenbergi and Elisabethiella socotrensis form a species complex of five lineages in East and Southern Africa. Up to two morphologically distinct lineages were found to co-occu...
متن کاملMolecular dating and biogeography of fig-pollinating wasps.
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for over 60 million years. But when and where did pollinating fig wasps (Agaonidae) originate? Some studies suggest that agaonids arose in the Late Cretaceous and the current distribution of fig-wasp faunas can be explained by the break-up of the Gondwanan landmass. However, recent molecular-dating studies suggest diverg...
متن کاملAdaptive evolution of the circadian gene timeout in insects
Most insects harbor two paralogous circadian genes, namely timeout and timeless. However, in the Hymenoptera only timeout is present. It remains unclear whether both genes, especially timeout in hymenopteran insects, have distinct evolutionary patterns. In this study, we examine the molecular evolution of both genes in 25 arthropod species, for which whole genome data are available, with additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology letters
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2014